387 research outputs found

    The varying w spread spectrum effect for radio interferometric imaging

    Get PDF
    We study the impact of the spread spectrum effect in radio interferometry on the quality of image reconstruction. This spread spectrum effect will be induced by the wide field-of-view of forthcoming radio interferometric telescopes. The resulting chirp modulation improves the quality of reconstructed interferometric images by increasing the incoherence of the measurement and sparsity dictionaries. We extend previous studies of this effect to consider the more realistic setting where the chirp modulation varies for each visibility measurement made by the telescope. In these first preliminary results, we show that for this setting the quality of reconstruction improves significantly over the case without chirp modulation and achieves almost the reconstruction quality of the case of maximal, constant chirp modulation.Comment: 1 page, 1 figure, Proceedings of the Biomedical and Astronomical Signal Processing Frontiers (BASP) workshop 201

    Geodesic Information Flows: Spatially-Variant Graphs and Their Application to Segmentation and Fusion

    Get PDF
    Clinical annotations, such as voxel-wise binary or probabilistic tissue segmentations, structural parcellations, pathological regionsof- interest and anatomical landmarks are key to many clinical studies. However, due to the time consuming nature of manually generating these annotations, they tend to be scarce and limited to small subsets of data. This work explores a novel framework to propagate voxel-wise annotations between morphologically dissimilar images by diffusing and mapping the available examples through intermediate steps. A spatially-variant graph structure connecting morphologically similar subjects is introduced over a database of images, enabling the gradual diffusion of information to all the subjects, even in the presence of large-scale morphological variability. We illustrate the utility of the proposed framework on two example applications: brain parcellation using categorical labels and tissue segmentation using probabilistic features. The application of the proposed method to categorical label fusion showed highly statistically significant improvements when compared to state-of-the-art methodologies. Significant improvements were also observed when applying the proposed framework to probabilistic tissue segmentation of both synthetic and real data, mainly in the presence of large morphological variability

    Parental origin of the two additional haploid sets of chromosomes in an embryo with tetraploidy

    Full text link
    We report on the molecular investigations performed on an embryo with tetraploidy, karyotype 92,XXXY. The embryo was spontaneously aborted after eight weeks of gestation. Molecular analyses were performed in order to determine the parental origin and mode of formation of the two additional haploid sets of chromosomes. Microsatellite markers mapping to pericentromeric chromosome regions were used. Our results show a maternal origin of one additional set of chromosomes most likely due to the incorporation of the polar body of meiosis I and a paternal origin of the second additional set of chromosomes most likely due to dispermy. The karyotype 92,XXXY is rather unusual, indeed the vast majority of cases with tetraploidy have the karyotypes 92,XXXX or 92,XXYY. To the best of our knowledge this is the first case with 92,XXXY for which molecular investigations have been performed

    Shift-Symmetric Configurations in Two-Dimensional Cellular Automata: Irreversibility, Insolvability, and Enumeration

    Full text link
    The search for symmetry as an unusual yet profoundly appealing phenomenon, and the origin of regular, repeating configuration patterns have long been a central focus of complexity science and physics. To better grasp and understand symmetry of configurations in decentralized toroidal architectures, we employ group-theoretic methods, which allow us to identify and enumerate these inputs, and argue about irreversible system behaviors with undesired effects on many computational problems. The concept of so-called configuration shift-symmetry is applied to two-dimensional cellular automata as an ideal model of computation. Regardless of the transition function, the results show the universal insolvability of crucial distributed tasks, such as leader election, pattern recognition, hashing, and encryption. By using compact enumeration formulas and bounding the number of shift-symmetric configurations for a given lattice size, we efficiently calculate the probability of a configuration being shift-symmetric for a uniform or density-uniform distribution. Further, we devise an algorithm detecting the presence of shift-symmetry in a configuration. Given the resource constraints, the enumeration and probability formulas can directly help to lower the minimal expected error and provide recommendations for system's size and initialization. Besides cellular automata, the shift-symmetry analysis can be used to study the non-linear behavior in various synchronous rule-based systems that include inference engines, Boolean networks, neural networks, and systolic arrays.Comment: 22 pages, 9 figures, 2 appendice

    Impact of foregrounds on Hi intensity mapping cross-correlations with optical surveys

    Get PDF
    The future of precision cosmology could benefit from cross-correlations between intensity maps of unresolved neutral hydrogen (HI) and more conventional optical galaxy surveys. A major challenge that needs to be overcome is removing the 21cm foreground emission that contaminates the cosmological HI signal. Using N-body simulations we simulate HI intensity maps and optical catalogues which share the same underlying cosmology. Adding simulated foreground contamination and using state-of-the-art reconstruction techniques we investigate the impacts that 21cm foregrounds and other systematics have on these cross-correlations. We find that the impact a FASTICA 21cm foreground clean has on the cross-correlations with spectroscopic optical surveys with well-constrained redshifts is minimal. However, problems arise when photometric surveys are considered: we find that a redshift uncertainty {\sigma}_z {\geq} 0.04 causes significant degradation in the cross power spectrum signal. We diagnose the main root of these problems, which relates to arbitrary amplitude changes along the line-of-sight in the intensity maps caused by the foreground clean and suggest solutions which should be applicable to real data. These solutions involve a reconstruction of the line-of-sight temperature means using the available overlapping optical data along with an artificial extension to the HI data through redshift to address edge effects. We then put these solutions through a further test in a mock experiment that uses a clustering-based redshift estimation technique to constrain the photometric redshifts of the optical sample. We find that with our suggested reconstruction, cross-correlations can be utilized to make an accurate prediction of the optical redshift distribution.Comment: Version 2 - accepted for publication on 5th July 2019 in Monthly Notices of the Royal Astronomical Society Main Journa

    Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    Get PDF
    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust

    Instantiated mixed effects modeling of Alzheimer's disease markers

    Get PDF
    The assessment and prediction of a subject's current and future risk of developing neurodegenerative diseases like Alzheimer's disease are of great interest in both the design of clinical trials as well as in clinical decision making. Exploring the longitudinal trajectory of markers related to neurodegeneration is an important task when selecting subjects for treatment in trials and the clinic, in the evaluation of early disease indicators and the monitoring of disease progression. Given that there is substantial intersubject variability, models that attempt to describe marker trajectories for a whole population will likely lack specificity for the representation of individual patients. Therefore, we argue here that individualized models provide a more accurate alternative that can be used for tasks such as population stratification and a subject-specific prognosis. In the work presented here, mixed effects modeling is used to derive global and individual marker trajectories for a training population. Test subject (new patient) specific models are then instantiated using a stratified “marker signature” that defines a subpopulation of similar cases within the training database. From this subpopulation, personalized models of the expected trajectory of several markers are subsequently estimated for unseen patients. These patient specific models of markers are shown to provide better predictions of time-to-conversion to Alzheimer's disease than population based models

    Lack of clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities

    Full text link
    We report results from 21-cm intensity maps acquired from the Parkes radio telescope and cross-correlated with galaxy maps from the 2dF galaxy survey. The data span the redshift range 0.057<z<0.0980.057<z<0.098 and cover approximately 1,300 square degrees over two long fields. Cross correlation is detected at a significance of 5.18σ5.18\sigma. The amplitude of the cross-power spectrum is low relative to the expected dark matter power spectrum, assuming a neutral hydrogen (HI) bias and mass density equal to measurements from the ALFALFA survey. The decrement is pronounced and statistically significant at small scales. At k1.5k\sim1.5 hMpc1 h \mathrm{Mpc^{-1}}, the cross power spectrum is more than a factor of 6 lower than expected, with a significance of 14.8σ14.8\,\sigma. This decrement indicates either a lack of clustering of neutral hydrogen (HI), a small correlation coefficient between optical galaxies and HI, or some combination of the two. Separating 2dF into red and blue galaxies, we find that red galaxies are much more weakly correlated with HI on k1.5k\sim1.5 hMpc1h \mathrm{Mpc^{-1}} scales, suggesting that HI is more associated with blue star-forming galaxies and tends to avoid red galaxies.Comment: 12 pages, 3 figures; fixed typo in meta-data title and paper author

    Foreground Subtraction in Intensity Mapping with the SKA

    Get PDF
    21cm intensity mapping experiments aim to observe the diffuse neutral hydrogen (HI) distribution on large scales which traces the Cosmic structure. The Square Kilometre Array (SKA) will have the capacity to measure the 21cm signal over a large fraction of the sky. However, the redshifted 21cm signal in the respective frequencies is faint compared to the Galactic foregrounds produced by synchrotron and free-free electron emission. In this article, we review selected foreground subtraction methods suggested to effectively separate the 21cm signal from the foregrounds with intensity mapping simulations or data. We simulate an intensity mapping experiment feasible with SKA phase 1 including extragalactic and Galactic foregrounds. We give an example of the residuals of the foreground subtraction with a independent component analysis and show that the angular power spectrum is recovered within the statistical errors on most scales. Additionally, the scale of the Baryon Acoustic Oscillations is shown to be unaffected by foreground subtraction
    corecore